
ENHANCE YOUR JAVASCRIPT APPLICATIONS WITH

WEBSOCKETS

RECEIVING
DATA

HTTP

SERVER

{Request}

Pr
oc

es
sin

g

{Response}

CLIENT

AJAX

SERVER

{Request}

{Response}

{Request}

{Response}

{Request}

{Response}

CLIENT

GETTING
UPDATES FROM

THE SERVER

POLLING

SERVER

Anything new?

Nope

Anything new?

Nope

Anything new?

Ah, yeah, I have a new post, here you go!

CLIENT

LONG
POLLING

SERVER

Anything new?

Here you go

Pr
oc

es
sin

g

Waiting until we have an update 
and keep the connection open

CLIENT

SERVER
SIDE
EVENTS

SERVER

Subscribe to topic

Update

Update

Update

CLIENT

BIDIRECTIONAL
COMMUNICATION

WEBSOCKETS

SERVER

{Request}

{Response}

Update

Update

{Request}

{Response}

Update
CLIENT

WEBSOCKETS

• Full-duplex bi-directional communication
between client and server

• Only one HTTP request, then the connection is
upgraded into a TCP connection

• Headers are only sent once (see above)

• Capable of sending binary data

• Standardised (uses protocol handshakes)

Performance

• Multiplexing: use multiple „channels“  
through the same websocket connection 

• No capping of simultaneous requests 

• Avoid the additional payload of HTTP headers 

• TCP ensures that all messages are sent in order

Securing your socket

• Use Secure connections! (wss://)  

• Authentication can be on a connection level (connect requires JWT) 

• Authorization can apply for certain channels (join requires certain role/capability) 

• Additional authorization / authentication can occur on an event level (user needs role/capability) 

• Presences can be restricted (user with same ID can not be present more than x times 

• Most secure way is to handle authentication on the server and only accept connections from signed in
users

USE CASES

• IoT

• Real Time Collaboration

• Chats

• Live GPS tracking

• Daytrading and realtime chart analysis

• Games and applications that need a low-latency real
time connection and presence tracking

Wanna try?
https://sockets.juliawill.com

SERVER SIDE
– THE GOOD

• Depending on the hardware, websockets
can manage up to 1M concurrent
connections

• Low overhead

• Good support - a lot of frameworks have
builtin support. For pretty much all others
libraries exist

SERVER SIDE
– THE BAD & THE UGLY

• Websocket connections are not HTTP connections, so the cap that is set by
the HTTP-Server will not apply. Thus, it is possible to open 100 Tabs or more
and establish the same amount of connections - in just one browser. 
 
To avoid clogging the server, restrictions should be implemented

• In load balanced environments, it might be problematic to
• keep sockets in sync

• No Logging by default

• Always use a secure connection (wss)

SERVICES
– YOU DON’T
HAVE TO
CODE YOUR
OWN

CLIENT

• Native browser support in HTML 5

• Well maintained client libraries exist
(socket.io)

• Easy and standardized implementation

http://socket.io/

QUESTIONS?

THANK YOU!
JULIA WILL

Head of Development, FLEWID AB

julia.will@flewid.se
@mileandra

mailto:julia.will@flewid.se

References

• Demo Application Repo: https://github.com/mileandra/sockets_app

• Libraries And Services:
• Socket IO https://socket.io/
• Pubnub https://www.pubnub.com/
• Pusher https://pusher.com/
• Kaazing https://kaazing.com/
• Firebase https://firebase.google.com/

• Native Websocket API https://webplatform.github.io/docs/apis/websocket/

https://github.com/mileandra/sockets_app
https://socket.io/
https://www.pubnub.com/
https://pusher.com/
https://kaazing.com/
https://firebase.google.com/
https://webplatform.github.io/docs/apis/websocket/

